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SIMPLE PROCESSORS OF STAR TRACKER COMMANDS FOR
STABILIZING AN INERTIATLY ORIENTED SATELLITE

By Robert D. Showman, Brian F. Doolin,
and G. Michael Sullivan

Ames Research Center
SUMMARY

The study develops processors which convert star tracker gilmbal angle
measurements to satellite attitude control signals. An exact processor is
nonlinear and complex because the gimbal angles vary as the inertial orienta-
tion of the vehicle changes. In this paper, approximations to the exact pro-
cessor are developed which greatly simplify the mechanization and yet allow
satisfactory attitude control.

The approximate processors are derived from a perturbation analysis in
which only the first-order terms are considered significant. The first pro-
cessor, called the ideal processor, is a direct mechanization of the first-
order approximation to the exact equations and is the most complex to
mechanize. It requires resolvers on the trackers' outer gimbal axes and the
computation of the tangent and the sine and cosine of the difference of two
angles. Two approximations to the ideal processor, called the partial pro-
cessor and the constant processor, require less mechanization. The partial
processor reduires resolvers only on the trackers' outer gimbal axes. The
constant processor only requires the mechanization of constants which are
sign-controlled as a function of the outer gimbal angles.

The use of the three processors to derive attitude control signals for an
example satellite such as the Orbiting Astronomical Observatory is investi-
gated. The functional requirements of the "coarse pointing mode" are imposed.
It is shown that both the ideal and partial processor provide the required
transient and steady-state performance over a commanded gimbal range that is
limited only by the physical nature of the star tracker. Also, it is shown
that resolver errors of 5° in the mechanization of the partial processor have
a negligible effect on the performance of the system. The constant processor
is shown to provide a system with the required performance over a commanded
gimbal angle range of +60°.

INTRODUCTION

An important class of satellites is one whose mission requires that the
satellite orientation be fixed with respect to inertial space. Such a vehicle
is usually termed "inertially oriented" or "inertially stabilized." Mission
objectives for this type of satellite frequently require extremely accurate
attitude control, thus a precision sensor is needed for determining attitude.



One feasible sensor is the star tracker. The use of star trackers for
attitude stabilization is the subject of this paper.

The star tracker is an

C:b Y OUTER AXIS optical or light sensing device

g mounted in a gimbaled unit that
has two degrees of freedom
(fig. 1). The star tracker is
locked onto a target star by
sensing the misalinement between
its optical axis and the line-
of-sight (1.0S) to the star and
by using this error signal to
drive the gimbals, the star
tracker controls its optical
axis to be coincident with the
LOS to the star.

@ OPTICAL AXIS INNER AXIS The attitude of a satellite
can be related, in general, to
Figure 1.- Star tracker with two degrees of a reference frame formed by the
freedom. directions to two stars. If

two star trackers are pointed

at known guide stars and if the
orientations of the star trackers with respect to the vehicle are known, the
attitude of the satellite can be determined. Conversely, if the vehicle is in
a desired attitude, the relative orientations of the two star trackers with
respect to the vehicle can be calculated in terms of their gimbal angles. If
the calculated gimbal angles are the commanded angles, the deviation of the
gimbals from their commanded angles then provides a measure of the satellite's
deviation from its prescribed attitude. At least three of the four gimbal
angle errors from the two star trackers are required to determine the vehicle
attitude error. Since the gimbal angle errors are generated about axes which
are, in general, neither alined to the control axes of the vehicle nor mutu-
ally orthogonal, they must be processed to be useful as control signals.

Computation of the satellite attitude errors from the gimbal angle errors
is quite complex if the exact equations are used. An approximaste relation-
ship is desired that simplifies the computation. If, however, the satellite
attitude and guide stars for the trackers are to be arbitrary, then the gimbal
error processor must provide useful control signals over a wide range of star
tracker gimbal angles. Yet, if the processor is to be used on board a
satellite, it should be as simple as possible.

The use of star trackers to derive control signals for satellite stabili-
zation or attitude control has been studied in references 1 to 3. Meyer
developed a scheme that can be used either to stabilize the attitude of the
satellite or to control it through large-angle reorientation maneuvers. Since
the method is general, computation of the control signals is complex and
requires a computer on board the satellite. The processor developed in ref-
erences 2 and 3 is much simpler to mechanize and does not require a computer.



It is, however, applicable only for attitude stabilization. The scheme is
derived on the basis of a first-order approximation of the satellite from its
nominal or prescribed attitude. ZEach star tracker provides an independent
estimate of the satellite's error in attitude. Since a minimum of two
trackers is required, the individuzal estimates are averaged to provide an
approximation to the attitude error. Although its mechanization is simple,
the scheme does not allow attitude stabilization of the satellite over the
complete range of gimbal angles, since instabilities can occur when the com-
manded gimbal angles become large.

This paper considers three related processors of gimbal angle errors.
They are like the processor in references 2 and 3, in that they come from a
perturbation analysis where only first-order terms are considered significant.
They differ, however, in that they process gimbal angle errors from pairs of
star trackers rather than from each tracker independently. Of the three
methods of processing the gimbal angle errors, the first, called the ideal
processor, is a direct mechanization of the first-order approximation to the
exact equations. The other two schemes, called the partial processor and the
constant processor, are variations of the ideal processor that simplify the
mechanization and eliminate the need for a computer. The ideal processor
does require more computation than the simplified forms. The characteristics
of the system using each of the processors are developed so that the choice of
a particular processor for a specific application can be made by the system
designer.

The first section of the report discusses the problem of determining a
satellite's attitude by means of star trackers. The pertinent attitude per-
turbation equations are derived and various conditions that simplify their
form are examined. The three processors are then defined and their peculiar-
ities discussed. The next section concerns the design and performance analy-
sis of a system using each of the three processors. Here the functional
requirements and basic stabilization system parameters of the Orbiting Astro-
nomical Observatory are used for illustration. Finally, a section is devoted
to the results of a computer simulation of the example stabilization system
using each of the three processors.

SYMBOLS
B1,B2 parameter plane variables for ideal and partial processor
Bp,Bp parameter plane variables for partial processor - imperfect
mechanization
cy cosine 7
Cp>Cp parameter plane variables for constant processor - trackers 1 and 3
CE characteristic equation



dis constant gain for partial processor - trackers 1 and 3

Dij determinant of N matrix for trackers i and j
Ep,Ep parameter plane variables for constant processor - trackers 1 and 2
Fis determinant of N matrix for trackers 1 and 2 when a gimbal error

combination of A4ABi, A1, and Ay, is used

g linear transfer function for forward loop

g5 nonlinear transfer function for forward loop

G matrix transfer function for forward loop

H product of constant processor and geometry matrix
HD determinant of H matrix

I identity matrix

I3 principal axis or control axis inertia

J inertia of the motor inertia wheel

K linear forward loop gain

Ka compensator gain

Km motor gain

Kgi feedback gain when the partial processor is used
M ideal processor

M, constant processor

Mp partial processor

Mpg partial processor - imperfect mechanization

N geometry matrix

N; describing function for dith channel

qij constants for constant processor ~ trackers 1,2
rij constants for constant processor -~ trackers 1,3
R transformation relating star tracker gimbal rates and vehicle rates



Uii,U13
Vii,Vis
aji,Bi,74
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Ti,T2

Tm

Wy sWoy s Wav
ww1’ww2’wW3
Wyio

complex variable of the laplace transformation
sine ¥

tangent B

external torque about the ith axis (time domain)
external torgue about the ith axis ("s" domain)
constants in the partial processor for trackers 1 and 2
constants in the partial processor for trackers 1 and 3

rotations about the 1, 2, and 3 axes of the ith star tracker

angular velocity about the 1, 2, and 3 axes of the ith star
tracker

measure of the partial processor mechanization error

first-order approximation to rotation about the 1, 2, and 3
axes of the ith star tracker

error in the 7; ginbal angle

region of restricted operation
first-order approximation to rotations about control axes

initial values of @, 6, and V¥

control signals obtained from the processors

relative damping ratio

angular rates about the control axes

compensator time constants

motor time constant

inertial angular rate of the vehicle

angular rate of the motor inertia wheel

ith motor inertia wheel

initial angular rate of the

natural frequency



ATTITUDE DETERMINATION VIA STAR TRACKERS

The role of the star trackers in the control system is depicted in
sketch (a). The star trackers, represented by one block in the sketch, are
considered to be locked onto selected target stars. When the vehicle is in
its desired attitude, the trackers point away from the satellite in the direc~
tions corresponding to the gimbal angles which are selected on the ground and
stored in the vehicle as commands. But since various disturbances move the
vehicle while the trackers still point at their targets, the gimbal angles
differ from their commanded values. The sketch illustrates that these angle
errors are detected and processed to form an estimate of the vehicle's devia-
tion from its desired attitude. Finally, the sketch shows that this estimate
is used by the controller to activate a motor or jet, which, in turn, drives
the vehicle back to its desired attitude.

Disturbances

Control Vehicle

and :
actuation dynamics

Commanded
gimbal angles

Star tracker
dynamics

| Actual
gimbal |

angles [

Processor

The forms of the geometry matrix, N, and the processor matrix depend on
the way the star trackers are mounted on the vehicle. Figure 2 illustrates
the mounting arrangements considered in this report, defining them relative
to the vehicle's control axes (1Y - roll, 2V - pitch, 3V - yvaw). The trackers
are shown with their ginbal axes in the null position and their optical,
inner, and outer axes labeled 1, 2, and 3, respectively. The superscript indi-
cates the tracker number; thus, 12 is the optical axis of tracker number 2.
Trackers 1, 2, and 3 are mounted to the vehicle similarly: their outer gimbal i
axes (31) are alined to the roll axis (1Y) of the vehicle. Tracker L is
mounted differently: 1its outer gimbal axis, 34, is parallel to the pitch axis

(2V) of the vehicle.

0 W R et oS3 i R SRt e o .

The orientation of a star tracker with respect to the vehicle is speci- ;
fied by two gimbal angles. The angles for tracker number 1 are defined in the
drawing on the right in figure 2. The imner and outer gimbal angles are

6
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Figure 2.- Illustration of gimbal angles and arrangements of star trackers on the spacecraft.

designated, B, and y,, respectively. To define a coordinate system for the

star tracker, a third angle (a3) is introduced which refers to angular rota-
tion about the optical axis. The angle a3 cannot be measured by the star

tracker. Angles for the other trackers are similarly defined.

The motion of the satellite can be expressed both in the coordinate sys-
tem defined in the vehicle and in the coordinate system defined in the tracker.
A simple way of describing the motion is to express the angular velocity of
the vehicle (?1v: Woys Wgy) in terms of the gimbal angle rates of the star
tracker (&, Bi, &lﬁ. In order to equate the gimbal angle rates to the vehi-
cle angular rates, it must be assumed that the sensor tracks its star per-
fectly. The sensor's error signal, which this assumption ignores, can easily
be added later if necessary. The transformation between tracker gimbal rates
and vehicle angular rates is derived in appendix A. The rate transformation,
R, for each of the trackers indicated in figure 2 is given in table I. Since
the control system is to be used for stabilization and the motion about any
nominal attitude can be considered small, a perturbation analysis is appropri-
ate. Therefore, the vehicle angular rates (wlv, Weys wsv) are approximated by

7



the Euler angle rates (@, é, ﬁ). Since the motion is assumed to be small,
trigonometric elements in the transformation R can be considered constants
that are evaluated at the nominal or commanded angles. The transformation R
then provides a first-order approximation to the relationship between the
deviation of the gimbal angles from their commanded values and the deviation
of the satellite from its prescribed attitude. For example, the first-order
approximation for tracker number 1 is

- - _ N
AR} 0 cy1/eBa -sy1/cB1 &9
Myl =] O S71 cY1 JANS (1)
TAVS) 1 ~-cy1tBa sy1tB1 Ay

The attitude error of the vehicle could be determined from equation (1)
if each of the error signals AQj1, AB;, and Ay; were measured by the star
tracker. Since the star tracker cannct sense angular motion about its optical
axis, Ay 1is not measurable. A gimbal angle error signal from a second star
tracker must then be substituted for Aa,; to determine the vehicle attitude.
The third measurable signal could be either an outer gimbal error signal (Ay)
or an inner gimbal error signal (AB) from any of the remaining trackers. For
example, if the inner gimbal error from star tracker 3 (ABs) is substituted
for a3, the following transformation is obtained:

el T 17

B 0 SY1 cy1 A
Aya| = |1 -cy1tBa sy1tBy JAYe] (2)
ABs 0 -CYa SY3 AY

L _ =

The attitude of the vehicle can now be estimated from the gimbal angle
measurements (if they form an independent set) by inverting egquation (2).

Equation (2) gives a form that matrix N can take. Several forms aris-
ing from different combinations of gimbal error signals from two trackers are
given in table II; many other combinations are also possible. For example,
one error signal from each of three star trackers could be used to estimate
the error in vehicle attitude. However, the use of gimbal errors from three
trackers has a distinct disadvantage when reliability is considered. Conse-
quently, gimbal errcor signals from only two trackers are considered. The
ginbal error combinations listed in table II are representative of all the

possible cases.
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If the gimbal freedom of the star trackers is restricted to small angles
and if the trackers are properly mounted to the vehicle, the gimbal error sig-
nals directly provide an accurate estimate of the attitude error. However,
it is usually desirable to be able to command large gimbal angles to track the
available guide stars. Therefore, the gimbal axes are, in general, not alined
to the control axes nor do they form an orthogonal set. A transformation is
then required to convert the gimbal error signals into an estimate of the
vehicle attitude error. Three classes of such transformations, or processors,
are defined. They are referred to as (L) the ideal processor, (2) the partial
processor, and (3) the constant processor.

Tdeal Processor

The ideal processor is defined as the first-order approximation relating
the vehicle control signals to the gimbal angle errors. For tracker pair 1,3
when the ginmbal errors APy, Ayi, and ABsz are used, the processor is the
inverse of equation (2) and is given by the following equation:

— = — —_ — ™

€p s(7a-71)tBa c(yi-7s) -tBa AB1

g | = X sYa 0 -Cya AvE ] (3)
c(71-73)

€y cYs 0 S71 ABs

The ideal processor for the other combinations of ginmbal angle errors is given
as the M matrix in table II. Bach is the inverse of the corresponding N
matrix.

The processor (M) could be mechanized on the satellite in at least two
ways. The first method would be to mechanize edch of the matrix elements with
e potentiometer whose values would be programmed for each desired attitude.
The potentiometers could be programmed either manually from a ground station
or automatically on board the satellite. In either case, additional telemetry
channels are required. Manual programming from a ground station has the
advantage that an on board memory unit is not required but the disadvantage
that changes in attitude can be made only when the satellite is over a ground
station. Automatic programming of the potentiometers has the advantage that
changes in the desired attitude can be made at any position in the orbit but
the disadvantage that a memory unit is required. The size of the memory unit
depends on the number of changes in desired attitude between ground stations
and the number of tracker pairs that must be programmed. The second method
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would be to mechanize the trigonometric elements actively. Although such
mechanization is more complex than that with potentiometers, a storage unit
and additional telemetry channels are not required. Also, attitude can be
changed at any position in orbit. The theoretical investigation that follows
is applicable to either mechanization.

The complexity of the 1ldeal processor varies with the particular gimbal
error combination selected. For example, the ideal processor for tracker
pair 1,2 - if ABi, Ay:i, and ABs are used - is

€ c(y1-72)tB1 s(y71-72) B NBy
1
c = —_—— cY 0 cy Ay ( L"
o 8(71-72) 2 * * )
€y -872 0 -571 NBo
. — 3 -

and has the same form as equation (3). The processors in equations (3) and
(4) are clearly simpler than the other ideal processors listed in table II.
The simpler processors have not only two zero elements but also simpler
trigonometric functions for the nonzero elements.

The complexity of the ideal processor depends on both the relative aline-
ment of the paired star trackers and on the combination of gimbal errors
chosen to estimate the attitude error. Although many combinations were
studied, only representative cases are discussed. The variation in complexity
due to the relative alinement of the paired trackers is revealed by comparing
the processors for tracker pairs 1,3 and 1,4. Since both use a gimbal error
combination of two inner and one outer, the simpler processor of tracker pair
1,3 clearly indicates the preferred alinement occurs when the outer gimbal
axes are parallel. The variation in complexity due to the combination of gim-
bal errors then is exhibited by comparing the two processors for tracker pair
1,2. The simpler processor is obtained when a gimbal error combination of
two inner (ABi, ABs) and one outer (Ay,) is used. In summary, therefore, the
simplest ideal processor is obtained when the paired star trackers are mounted
to the vehicle so that their outer gimbal axes are parallel and when a combi-~
nation of two inner and one outer gimbal error signals is chosen. Mechanizing
this processor insures that, to a first order, the control channels are

decoupled.
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Partial Processor

Mechanization of even the simplest form of the ideal processor for use
on board a spacecraft is relatively complex due to the appearance of such
functions as the sine and cosine of the difference of angles and the tangent.
It is usually desirable to obtain a simpler form that still provides the nec-
essary performance. Simpler forms are obtained by considering approximations
to the ideal processor. If, to reduce complexity, only simple sine and cosine
terms in the ideal processor are mechanized by using resolvers, while the more
complex elements are made constant, the transformation in equation (3) can be
written

- —
Vi 1 Vis
M, = |dissys 0 -d13Cy1 (5)
diacysa 0 diasy:

where vii is the constant for -[s(yi-ys)/c(y1-7s)]tB1, vis is the constant
for [-tBi/c(y71-75)), and dis is the constant for [l/c(yi-7s)]. The con-
stants (vi1, Via, dis) are independent of the gimbal angles. Equation (5) is
designated the partial processor. The product of the partial processor and
the geometry matrix is

- 7
L (vi18y1-cy1tB1-vizcys) (vircyi+sy1tB1+viasys)
M?N =0 dize(y1-7s) 0 (6)
0 o) dizc(y1-73)
— —

It follows from equation (6) that this processor insures the independence of
only two control signals (e, and e,) rather than all three as obtained with
the ideal processor. However, the loss of independence of ¢ is a small
price to pay for the simpler mechanization. BEquation (6) also shows that the
gains of ¢y and €y through the partial processor are functions of the com-
manded outer ginmbal angles, whereas their gains through the ideal processor
are constant. Consequently, the dynamic response of the system using the
partial processor varies as a function of the commanded outer gimbal angles.

The partial processor is the processor that provides two independent
control signals when only the sine and cosine terms of the ideal processor are
mechanized. It is derived from only the simplest ideal processor (table IT).
To use this processor, the inner gimbal error signal from one tracker is
passed through a resolver on the outer gimbal of the second tracker of the
pair; thus, AB; 1is passed through the outer gimbal resolver of 7a, and ABg
is passed through the outer gimbal resolver of y;.

11



Constant Processor

Although the partial processor allows simple mechanization, another
approximation to the ideal processor allows even simpler mechanization. This
form, designated as the constant processor, is obtained by letting each of the
nonzero elements of the ideal processor be constant. The elements of the
matrix are not parameters to be evaluated at each commanded set of gimbal
angles. They are to remain constant at least in magnitude over the whole
range of allowed values of the angles. However, the matrix elements have dif-
ferent signs in different regions of the range of angles. These sign changes
will be discussed later. The constant processor for tracker pair 1,3 is

Tya 1 ris
My, =| re1 0 Tos (1)
ray 0 rss-

where ry; is the constant for -[s(yi-ys)/c(y1-73)]tB1, rsy 1is the constant
for 373/0(71—73), etc. Only seven of the nine matrix elements must be

mechanized. The product matrix M,N is

— —
1 (riisyi-cyitBi-riscys) (ri1cy1+sy1tBi+riasys)
MoN =10 (r21871-T23cy3) (raicy1+ronsys) (8)
0 (ra1871-rascys) (ra1cyi+rasasys) ]

and shows that the pitch and yaw error signals are independent of the motion
about the roll axis.

The constant processors derived from the simplest ideal processor
(table II) not only simplifies the mechanization but also simplifies the anal-
ysis. The mechanization is simplified because only seven of the nine elements
must be considered. The constant processors which might be derived from ideal
processors other than the simplest require that all nine elements be mecha-
nized. The analysis is simplified because the control signals are partially

decoupled (see eg. (8)).

Indeterminant Condition

Since the gimbal axes vary as a function of the relative orientation of
the star tracker and vehicle, the error signals do not, in general, form an
orthogonal set of measurements and can, in fact, form a dependent set of mea-
surements. When this occurs, the attitude of the vehicle is unobservable.

This situation is termed the indeterminant condition.

12
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Figure 3.- Illustration showing when indeterminant condition would occur.

The indeterminant condition exists when the determinant of the N matrix
vanishes. The indeterminancy is therefore independent of the processor. From
the determinants given in table II (Dis, Dis, D14, Fi1z), it can be seen that
the condition i1s simplest to ascertain when the star trackers are used in a
manner that provides the simplest ideal processor. TFor example, the indeter-
minant condition occurs for tracker pair 1,3 when Dis = c(yi-ys) = O, for
tracker pair 1,2 when Dis = s(y1-72) = 0, and for tracker pair 1,4 when
Digqa = syy18y4-cy4tfi = 0. The geometrical interpretation of the indeterminant
condition for the preferred design (Dis and Dis) is that the optical axes of
the paired star trackers and the outer gimbal axes are coplanar. The situa-
tion would occur if the direction associated with point C 1in figure 3 were
contained in the plane defined by the vehicle and the targets stars A and B.
This interpretation provides a simple criterion for the selection of stars by
ground operations to avoid the condition.

The vehicle cannot be operated within the neighborhood of the indetermi-
nant condition because the error signald become less and less sensitive to
some motions. For example, the indeterminant condition for tracker pair 1,3
occurs when c(y1-ys) = O or, equivalently, when |71-73| = 90°. Therefore,
the region in which vehicle operation is prohibited is defined as

90° - &y < |ra-rs| s 90° + Ay (9)

where Ayp defines the magnitude of the restricted region. A graphical
interpretation of the restricted region is indicated by the shaded area in
sketch (b).
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¥, =7y =-90°
-+ by
Sketch (b) Sketch (c)
Similarly, the indeterminant condition for tracker pair 1,2 occurs when
s(y1-y2) = 0 or |yi-r2| = 0° The restricted region is
lyi-ve| = arg (10)

and is indicated by the shaded area in sketch (c).
ANALYSTIS AND DESIGN

The use of the three processors in deriving control signals for attitude
stabilization of an example satellite is investigated in this section. An
example of a satellite that might use the processors developed in the previous
section is the Orbiting Astronomical Observatory (OAO) whose mission objec-
tives require that the experiments on the satellite be directed at arbitrary
points in the celestial sphere. When the vehicle is pointed at an arbitrary
target, the attitude is defined by gimbaled star trackers and is controlled
by three mutually orthogonal motor inertia-wheel combinations. Both the sta-
bility and performance of the example system using each of the processors to
derive control signals will be investigated. Although the example satellite
uses momentum transfer for control, the use of the processors is not

restricted to such a system.
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Figure 4.- Attitude control system using star trackers 1 and 3.

Figure 4 is a block diagram of the control system. The gimbal error
signals from tracker pair 1,3 are shown being processed to provide an estimate
of the attitude errors. The processor indicated on the diagram could be any
one of the three discussed in the previous section, ideal, partial, or con-
stant. The equations provided in the diagram assume the following conditions:
(1) The mass distribution of the vehicle is such that the moments of inertia
about any three orthogonal axes are equal; (2) the linearized equations val-
idly describe the motor inertia-wheel combination; (3) the motor torque is
limited; and (4) gyroscopic coupling due to inertial wheel rotation is negli-
gible. A lead compensator is introduced because without it the system would
be highly oscillatory.

The motor nonlinearity shown in figure 4 is represented by a describing
function (ref. 4). This representation is valid since the motor-vehicle com-
bination behaves as a low-pass filter. The describing function is a pure gain
which decreases monotonically from its maximum value of unity - obtained with
the input in the linear region - to zero as the input increases.

Tdeal Processor
Stability.- Mechanization of the ideal processor insures that, to a first
order, the error signals, €;, €g, and ¢y, are independent; that is, each error
signal is only a function of the attitude error about its corresponding axis.

For example, the product of the ideal processor M and the geometry N is
the unity matrix. The control channels are therefore uncoupled and system
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stability is determined by investigating each control loop independently.
That this is true can be seen by deriving the characteristic equation (CE).

CE = DET(I + GMN) = O

where
MN = T
g1 0 0
G =|0 go 0]
0 0 83

N.K(Tys + 1
g; = iK{me + 1) i=1,2,3
1 s(1es + L)(mys + 1)

describing function for the ith channel

=
i

_ Kty

I1

Equation (11) can be written as follows:

CE = (L+ g1)(1 + g2)(1 + g3) =

(11)

(12)

(14)

(15)

0 (16)

Since the motion is damped if all roots of the characteristic equation have
negative real parts, it is necessary to show that the roots of each factor in
equation (16) have negative real parts. A general expression for the factors

is

(L+g) =0 1i=1,2,3

Substituting equation (14) into equation (17) gives:

MK <o (18)

(17)

10N.
- O S N QU OMEY 5 4
To T To ’T'm ’Tm

where

Ty = lOT2
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The parameter plane method (ref. 5) is convenient for determining sta-
bility. This method allows the system's stability to be expressed as a func-
tion of two variable parameters. If the two variable parameters are defined
by the following equations,

BL = 1/7»
(19)
the characteristic equation can be written as follows:
(o ) (B 20 mm 20
T T Tm Tm
By substituting -w,€ + jwnkjl - t2 for s and equating the real and imagi-

nary parts of the resulting expression for equation (20) to zero, the variable
parameters can be expressed as functions of damping (Q) and natural frequency
(wy) for a particular value of Type Thus, contours of constant { can be
mapped as functions of Bl and B2 with the ¢ = 0 contour defining the
stability boundary.

The stability regions on the parameter
plane are obtained by determining both the
real root boundaries (o = 0 and ¢ = ») and
the complex root boundaries (¢ = 0). Real
root boundaries (ref. 5) occur at Bl = O
and B2 = O and are plotted along with the
complex root boundaries in sketch (d4). If
the boundaries are properly shaded,l the
number of stable roots (roots with negative
real parts) can be determined for any combi-
nation of Bl and B2. The numbers in the
sketch indicate the number of stable roots
in each region. Since the characteristic
equation is third order, the sketch shows
that the system is stable, provided both
Bl and B2 are positive. An expanded plot
of this first quadrant is given in figure 5.

2 3 (Stable region)

DA @

LS

Sketeh (d)

The stability of the system using the ideal processor is determined by
examining the range of the variable parameters (Bl, B2). It is observed from
equation (19) that Bl and B2 are always positive because Te, Nj, and K
are always positive. Since the describing function N; varies from zero to
one, the operating point of the system varies along a constant Bl line from
B2 ~ O (large errors) to B2 = K (linear region) but is always in the first
quadrant. The system is, therefore, stable.

1The sheding of stebility boundaries is opposite to that suggested in
reference 5.
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Figure 5.- Parameter plane for ideal and partial processor.

Practical considerations require that certain gimbal angles should not
be commanded. The analysis just concluded implies that the system is stable
for any range of commanded gimbal angles. Although this 1s true, mechaniza-
tion of the ideal processor requires the term l/c(yl-ys) to be mechanized.
Since [1/c(y1-73)] » = as l71-73| - 90°, an upper limit must be imposed on
the gain term. This limit has already been established in the discussion on
the indeterminant condition and was defined as the region of restricted
operation in the 71, 73 plane.

The simultaneous use of multiple tracker pairs in the control loop may
be desirable for reliability purposes. The advantage of using more than one
pair of trackers is that the malfunction of one tracker will not result in
the loss of vehicle control. If several pairs are used simultaneously, the
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estimated attitude error signals from each pair of trackers may be averaged.
For example, if the loop gains for tracker pair 1,2 and 1,3 are, respectively,
B2.1o and B2;53, the loop gain for the multiple pair system is

_ B212 + Bgls

B2, = 21

Since the B2 for any individual tracker pair is positive, the average is
positive. The system using multiple pairs of trackers is therefore stable.

Performance.- The system using the ideal processor has been shown to be
stable. It is now necessary to choose the parameters BL and B2 that will
provide the desired transient and steady-state performance.

The OAO telescope is alined with the roll axis of the vehicle. Since the
telescope must point accurately in some specific direction, two stringent
steady-state conditions are imposed on the pitch and yaw channels. The first
condition, called Pointing Accuracy, requires that the roll axis of the vehi-
cle be pointed to within *1 min of arc. The second condition, called Drift
Rate Accuracy, requires that the desired attitude be held to within 15 sec of
arc for 50 minutes of time.

The steady-state errors are obtained by applying the final value theorem
to the pitch and yaw transfer functions when the torque input is a step funec-
tion. The pointing error and drift rate error are

2 2
. J . J
> > Qo + I—l' wWZO \Ifo + E wWSO
Oss + Vg = < + = < PE (22)

éins + V2 =/< K> < K> < DR (23)

where wyso and wyso are initial wheel speeds for pitch and yaw motors; "ss"
refers to steady state; ts and tz are external torques about the pitch and
yaw axes; and PE and DR are the maximum acceptable pointing error and the
maximum acceptable drift rate error, respectively. In addition, it is assumed
that the steady-state motion is in the linear region so that Ny = 1.

Equations (22) and (23) rewritten as

1 7T 2 . 24 1/2
KIPE = [(? t I wwaé) * <#o + f& wwsé) J (24)
BEIDR = K| DR * IR K > < > J (23)

Il
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specify the minimum gain X (or
14 §y=y-0 minimum B2) necessary to satisfy
1) =1952 kg-m? (1440 slug- f12) B2IpR each of the steady-state condi-
tions. The minimum gain (K) cal-
culated from equations (24) and
(25) is plotted in figure 6 for
the conditions listed in
table ITTI. For example, if
|ww20| = L0 percent of the maxi-
mum wheel speed and if
|t2| = 1000 dyne-cm, the minimum
gains (K) necessary to satisfy
the pointing accuracy and the
drift rate accuracy are, respec-
tively, K = 2.7 and X = 3.0.
Therefore, the minimum gain that
satisfies the drift rate specifi-
cation also satisfies the point-
ing accuracy specification. This
minimum gain is equivalent to the
minimum value of B2 1in the lin-
B2lpe ear region (Nj = 1). A value of
BlL wmust then be chosen in the
2+ acceptable range of B2 so that
the vehicle exhibits the desired
transient performance in the
L L L | pitch and yaw channels; that is,
0 1000 2000 3000 4000 5000 g Bl and B2 (Ni = 1) are
External torque (|1;] = |t5]). dyne-cm selected from the parameter plane
in figure 5 so that the desired

Figure 6.- Steady-state gain requirements - ideal damping ratio and natural
and partial processor. frequency are obtained.

leineav

Since the observatory is alined to the roll axis of the vehicle, perfor-
mance in roll is not so critical as in pitch and yaw. However, the procedure
for designing the roll control channel is identical to the procedure Jjust
described for the pitch and yaw channels.

Partial Processor With Perfect Mechanization

Stability.- The characteristic equation (CE) for the system using the
partial processor is derived as follows:

CE = DET(I + GMpN) = O (26)
The expanded form of the characteristic equation, with tracker pair 1,3, is

(L + g1)[1 + godiac(y1-78) {1 + gadize(yi-73)] = 0 (27)
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where the gi are given by equation (14). Since the stability of the system
is determined by investigating the roots of the individual products, the fol-
lowing generalized form is defined.

(L + Ksigi) =0 (28)
where

1 i 1
KSi = (29)
dize(71-73) i=2,3

Equation (14) can be used to write equation (28) as

g2 + <£L~+ $;> s2 + <}l‘ + lONiKSi§> s + Misi _ g (30)

2 2Tm Tm TaTm

where 711 = 1075.

The parameter plane is used to determine stability. If the variable
parameters are defined as follows,

BL = =
T2 (31)
B2 = NiKsiK

equation (30) becomes identical to equation (20). Therefore, the regions of
stability defined on the parameter plane for the partial processor are identi-
cal to the regions defined for the ideal processor (sketch (d) and fig. 5).
The difference between the behavior of the system using the processors lies in
the variability of the parameter Kgq (cf. egs. (31) and (19)).

The system using the partial processor is then stable if the parameters
Bl and B2 are always positive. Clearly, the parameter Bl 1is positive.
Since N; and K are positive, the condition B2 > 0 is satisfied if Kgi > O.
The condition is satisfied for the roll channel’(KSi = 1). TFor the pitch and
yaw channels, the condition Kgi > O requires that the sign of diz be
controlled as follows:

dig 20 if  |yi-7s| § 90° (32)

The parameter B2 1is then positive for all three control channels and the
system is stable.

The following observations are made from the preceding analysis. First,

the two constants vi, and vis in the partial processor for tracker pair 1,3
do not affect the stability of the system. They do, however, influence the
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amount of pitch and yaw motion that is coupled into the roll channel (see

eq. (6)). To give Vi1 and vis values other than zero in the hope of mini-
mizing the coupling leads either to complex logic or to computation equiva-
lent to mechanizing the ideal processor. Henceforth, they will be set equal
to zero. Second, the technique of combining outputs from multiple pairs of
trackers when using the ideal processor may be applied successfully when using
the partial processor.

Performance.- The parameters must now be chosen so that the system will
exhibit the desired transient and steady-state performance. Using the defini-
tions of steady-state error from the previous section, inequalities analogous
to equations (24) and (25) are

1 |(: J 2 . 7 27 1/2
B2 pg = Kazlpp 2 55 <90 I °°sz> * <‘4’o I ‘*’wso> ] (33)

DR S2|DR251§ < > < >J (3%4)

K., = Keq (see eq. (29))

B2|

A

where

Equations (33) and (34) provide the minimum loop gain KKg, necessary to
satisfy, respectively, the pointing accuracy requirement and the drift rate
requirement. The system will satisfy both steady-state requirements if the
magnitude of the gain is chosen at least as large as the larger of the gains
specified by equations (33) and (34); that is,

B2 = max-{KKSZ PE ; KnglDR}' (35)

where

N; =1 (linear region)

The transient performance of the system varies with the relative orienta-
tion of the star trackers and vehicle because of the variation in loop gain
(B2). The desired transient performance must be achieved over the complete
range of parameters. Assuming that the minimum B2 is chosen in the range
specified by equation (35), equation (31) becomes

Bgmin
Kiig = ———r— (36)
Y Te(rars) Lyg

where the minimum value of c(y1-ys) is dictated by the magnitude of the
restricted region. The maximum value of B2 is
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B2min
B2 = Kdjas =
max [0(71—73)]min

(37)

A value of Bl is chosen from the parameter plane (fig. 5) so that acceptable
transient performance in pitch and yaw is achieved over the complete range of
B2. The pitch and yaw channels then exhibit both the desired transient and
steady-state performence. The desired performance in roll is not so stringent
as pitch and yaw and is easily achieved.

The system using the partial processor for other tracker pairs exhibits
performance identical to that just found for tracker pair 1,3. Also, the
design procedure is identical. The only difference between tracker pairs
occurs in the definition of Kgqi. I the palred trackers are mounted on per-
pendicular faces of the vehicle, the gain Kgi = dj kc "7k)' If the paired
trackers are mounted on parallel faces of the vehlcle, %he gain

Kgi = dJkS(7J‘7k)

Partial Processor With Imperfect Mechanization

General. - The partial processor, if perfectly mechanized, provides a sys-
tem that stabilizes the satellite over a range of commanded gimbal angles
limited only by the possible angular rotation of the gimbals. Since errors
in mechanization exist, it is desired to determine their effect on the stabil-
ity and performance of the system. Mechanization of the partial processor
involves passing the gimbal error signals through resolvers and through fixed
gain elements (pots or amplifiers). The fixed gain elements are assumed to be
perfectly mechanized and the errors in mechanization exist only in the
resolvers. Imperfect mechanization results from either the misalinement of
the resclvers or an inaccurate readout of the gimbal position and would appear
as a resolver angle of ¥ + Ay vwhere Ay represents the error. The errors
are assumed to be less than 5° so that only the first-order terms are
significant.

The partial processor for tracker pair 1,3 with errors in mechanization
is

o) 1 0

Mpp = | diss(7atays) O -dige(yi+ayi) (38)

dige(ya+iys) 0 dias(y1+A71)

The product of the processor matrix (MP ) and the geometry matrix (N) would
show that the errors in mechanization have the effect of coupling the pitch
and yaw channels. The effect of the errors on the stability and performance
of the system is now investigated.
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Stability.- The characteristic equation (CE) for the system using the
partial processor for tracker pair 1,3 with errors in mechanization is

CE = DET(T + GMpN) = O (39)

The expanded form of equation (39) is derived in appendix B (B9) and is

CE = (1L + gN1)(1 + Bpg + Bpg®) = 0 (L0)

where
° 7 s(TZSKiTi?(:mi)+ 1) ()
Bp = (Nz + Nz)dise(yi-ys) + dislcygsyiNz - syacyilNs)d (k2)
By = NeNadiac(71-72)[daze(yi-rs) + diss(r1-73)3] (43)
5 = (&yz-v1) (hk)

Parameters Bp and By are also derived in appendix B ((B1k) and (B16)) and
are obtained by considering only the first-order error terms as significant.
The parameter &, defined by equation (4b), is a measure of the error in mech-
anization, The coupling introduced by the mechanization errors precludes
factoring the second-order polynomial in g (see eq. (40)) into two first-
order polynomials. (Compare equation (27) for perfect mechanization.)

The stability of the system is determined by investigating the factors
in equation (40). Since the roots of the factor (1 + glNi) = (1 + g1) have
already been shown to be stable, it is only necessary to investigate the
polynomial

S0 1+ Bpg + BDg2 =0 (45)

4 System stability can be expressed as a func-
tion of the two parameters Bp and Bp Dy
6 (Stable) using the parameter plane method. The real
and complex boundaries as well as the number
77 7751  of stable roots for each region are shown in
sketch (e). Since the polynomial of equa-
tion (45) is sixth order when expanded, any
combination of By and B that remeins in
the first quadrant but below the ¢ = 0
curve provides a stable system. An expanded
rlot of the first quadrant is given in
figure 7.

Sketch (e)
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Figure /.- Parameter plane - partial processor -
trackers 1,3.

The stability of the system
is determined by calculating the
range of the parameters Bp and
Bp. If the actual parameters are
contained within the stable
region indicated in sketch (e),
the system is stable. Both the
minimum and the maximum Bp mist
be calculated for a given Br.

It BDmax is less than the
¢ = 0 Dboundary and if BDmin > 0,
the system is stable.

For comparison purposes, the
stability of the system with per-
fect mechanization is determined
before imperfections are intro-
duced. The system has already
been shown to be stable. The dif-
ference between the previous anal-
ysis and the present analysis 1is
in the definition of the equations
used to express stability. For
perfect mechanization, equa-
tions (42) and (43) become the
following:

Bp = (Nz + Ng)digse(yi-ra)  (L6)

B

]

D NoNgldige(yi-7s) 12 (7))
Since the maximum Bp for a
given Bp occurs when Ny = Na,
equations (46) and (47) can be
combined to give

_ (B
BDmax - <3%> (48)

The maximum By is plotted as the solid line on the parameter plane in
figure 7. Since the minimum Bp is positive, the system is, as previously

indicated, stable.

The stability of the system with errors in mechanization i1s determined
next. ©Since a closed-form solution for the maximization of Bp does not
exist, the equations were programmed on a computer. The maximum was cal-
culated for a fixed Bp over the range of parameters considered; that is,
-60° < 71,75 < +60°, 1.11x10"° < Np,Ns < 1 (equivalent to initial attitude
errors as large as 50), and mechanization errors of O < lAyll,lAygl < 59,

For gimbal angle errors of IAyll = IAysl = 50, Tigure T indicates an
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insignificant difference in maximum Bp due to imperfections. The minimum
Bp is made positive by selecting the magnitude of the restricted region
(&yg). Since BDpin > 0, the following inequality is derived from (L43)

Ialmax < iCOt(71'73)|min (49)

where the minimum value of the cotangent is determined by the magnitude of the
restricted region (Ayg). If lays| = -lays|, (49) can be written

271 | oy < leot(ra-ra)| 5 (50)
If |Ayg| = 10°, the right side of (50) is evaluated at |yi-ys| = 90° *10°.
The maximum gimbal angle error is therefore

|ay ] oy < 5-05°

Therefore, BDmin is always positive and the system is stable for any

mechanization error less than 50.

Performance. - The performance of the system could be severely affected if
large errors in mechanization existed and were not comsidered. For example,
assume that the system with perfect mechanization is designed so that the
steady-state requirements are just met at the minimum loop gain, which occurs
on the boundary of the restricted region. If errors in mechanization actually
do exist, the system could be operating in the restricted zone and would not
exhibit the required steady-state performance. Therefore, the region in which
gimbal angles cannot be commanded must be expanded by an amount equivalent to
the maximum mechanization errors; thus, the region of restricted operation is

(o) o]
90° - (largl + 18lgax) s 172-78] = 90° + (larg] + |8] 05 (51)
Constant Processor With Tracker Pairs Mounted on
Perpendicular Faces
Constraints on the constants.- The stability of the system deriving its

error signals from the constant processor for tracker pair 1,3 is determined
in this section. The characteristic equation (CE) is

CE = DET(I + GM,N) = O (52)

where
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- -
riy 1 ris
MC = Tox 0 I'ns
r33 0 ras
L —_
or, equivalently,
CE = (1 + gN1)(1 + Cpg + Cpeg®) = O (53)
where
Cp = Na(rzisys - rzscys) + Na(rsicyy + rassys) (54)
Cp = NaNa(rairas - rsires)c(y1-73) (55)
and the r.. are constants to be determined.

1d

Except for the definitions of the constants, equations (53) and (40) are
the same. Therefore, the following two conclusions can be extracted from the
analysis for the partial processor (imperfect mechanization). First, the ele-
ments ri; and ris can be equated to zero because they influence only the
coupling between the control channels and not the stability of the system.
Second, the stable ranges of variation of the parameters Cp and Cp are the
same as those of Bp and By because the systems have the same parameter plane
diagram. The diagram for the constant processor given in figure 8 shows not
only the stability boundary illustrated in figure 7 and sketch (e), but also
the curve for ¢ = 0.2.

The parameters Cyp and Cp must, at least, be positive for the system to
be stable. This requirement can be met only if the signs of the constants
are controlled as a function of the outer gimbal angles 7, and ys. Since
No and Ng are positive, the following inequalities, which are the 22 and 33
elements of the product matrix M,N (see eq. (8)),

(ra1s71 - rescys) >0 (56)

(raicyy + razsys) >0 (57)

are sufficient to insure that CT remain positive. Since mechanization sim-
plicity is desired, arbitrarily let rsy = O. Inequality (56) is satisfied
if rsg 1s negative since the gimbal range is -60° < Y1sY3 < +60°. It fol-
lows from equation (55) that the parameter Cp will always be positive if
the sign of the constant rsz; 1s controlled as follows.

ra1 20 if |yi-7a| S 90° (58)
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Because rs; can be negative,
the following two conditions must
be imposed on rag to satisfy
the inequality (57). First, the
sign of the constant rzg must
e controlled as follows:

ras 20 if 7320 (59)

or rsssys > O. Second, the
magnitude of rsg must be chosen
so that the inequality of (60) is
satisfied.

CY1

573 max
rag < O

|7sa ]

lrssl >

(60)

The region in which (60) must be
evaluated is shaded in

sketch (f); that is, the region
in which r31 < 0. Also indi-
cated on the sketch is the sign
of the constants as a function
of the gimbal angles (71, 73)
and the region of restricted
operation. Evaluating the
inequality of (60) for the worse
condition (y; = +40° and

5 = -60°) results in

|I‘33l > O-88er31l (61)

Therefore, the parameters OCp
and Cp are positive if rp3 = O,
ross < O, and inequalities (58),
(59), and (61) are satisfied.

The parameters Cp and Cp
are positive but the system 1is
not necessarily stable. The con-
stants (rsg, rsi, ras) muist be
chosen so that the range of Cyp
and Cp 1is contained within the
stable operating region indi-
cated on the parameter plane



(fig. 8). Searching for a set of constants over an unrestricted range that
will provide a stable system is impractical. The range of constants over
which the search must be made is reduced considerably by investigating only
those sets that provide the desired steady-state performance.

Steady-state performance.- The equations describing the steady-state
pointing error and the steady-state drift rate error for the system using the
constant processor are derived in appendix C and are given by

L 2 2
65, + Vo = i J(hashzo - hashso)® + (-hszhzo + hazhso)” < PE - (62)

1

2 2
"2 2 1 t2 tS tz ts
\jeSS + WSS = HDK /<h33 i’; - hea f:: + | -has ﬂ + hos f;: < DR (63)

where

jus]
Il

hij = M.N for tracker pair 1,3

Hp = (roiras - roaray)e(yi-7s)

t; = external torque about the ith axis
-—-h — ,—-. J —
10 Po - —
@) Il ‘”wlo
J
bao | =1 8o - T “wao
¥ J
hao Y, - =—
] | O Il WSO—

hj, 1s proportional to the initial momentum about the ith axis. If
Hpy and the elements of the H matrix are substituted for trackers 1,3
(eq. (8)) and rso1 = O, equations (62) and (63) can be written as quadratic
equations in rpg as follows:

{h80 - [(PE)Kraic(r1-72)1%3}r3s - {2[rss - ra1s(r1-7s) Jhaohzolras
+ [r51 + 3 - 2rsirsss(yi-ys)Ihis < O (64)
2
{ta™ - [(DR)IlKT31C(71-73)]2}r§3 - {2[ras - rzis(y1-73)ltatslraes

+ [r51 + r8s - 2rairass(y1-7a)]ta® <0 (65)
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Sets of constants (rsa, rsi, ras)
can then be calculated so that
the system will satisfy each of
the individual steady-state
requirements for the most severe
conditions. These conditions are
listed in table IIT. The accept-
able range of reos for a given
rs; and ras 18 plotted in fig-
ure 9. The solid lines of con-
stant Irsll indicate the minimum
|r23] for a given \r33| to sat-
isfy the drift rate specification.
The dashed lines provide the same
information for the pointing accu-
racy specifications, For example,
if |rg1| = 2.0 and |ras| = 3.0,
the drift rate accuracy requires
that |rss| = 3.65 and the point-
ing accuracy requires that

|r23l = 3,32, In general, the

ra3

2+
|res| that satisfies the drift
rate specification also satisfies
the pointing accuracy
= specification.
A Stable set
O Unsiable set Stability.- The stability of
the system is now investigated by
o 1 . L — calculating the range of the vari-
fr33] able parameters (Cp, Cp) for a
specific set of constants chosen
Figure 9.- Steady-state gain requirements - from the acceptable region. The
constant processor - trackers 1,3. acceptable region 1s defined as

the region that satisfies not
only the steady-state conditions but also the inequality of (61). The hatched
boundary in figure 9 is plotted for the condition that lrssl = 0,884 lrgll.
Therefore, for a given 1rzs, acceptable sets of constants are chosen from the
region to the right of the hatched boundary and above the constant rg; bound-
ary. The sets of constants investigated are listed in table Iv(a). Sets 1,
2, and 3 provide a stable system whereas sets 4 and 5 result in an unstable
system. The "worst case" results of the stability calculations for sets 1 and
2 are plotted on the parameter plane in figure 8. The sets are also shown on
figure 9 with an indication of system stability (the A indicates a stable
set and the "o" indicates an unstable set)., The figure shows that sets of
constants that assure stable operation begin to occur when the left side of
(57) becomes significantly positive,
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Constant Processor With Tracker Pair Mounted
on Parallel Faces

Constraints on the constants.- The stability and performance of & system
using trackers 1 and 2 is investigated next. The characteristic equation is
identical to equation (52) except that M, and N are defined for trackers 1,2
(table II). Therefore, the form of eguation (53) for trackers 1,2 is

CE = (1L + gN1)(1 + Eqg + Epg®) = 0 (66)
where
Ep = Na(de1s7y - deasyz) + Na(dsicyi - dssceyz) (é1)
Ej = NoNs(dzsds1 - deidas)s(7i-72) (68)
IOZ—
As in the previous case, the con-
1 stants 4q.1 and 4:3 are equated
10 to zero. Also, the parameter
plane diagram for the system,
109 using the constant processor for
trackers 1,2 (Ep, Ep), is identi-
10! cal to the diagram for the imper-
fect mechanization of the partial
-2 processor (sketch (e) or fig. 7)
and is given by figure 10.
-3
0 A necessary condition for
stability is that ET, ED > O.
lo* The parameter Eg 1s positive if
Ep the following inequalities are
1075 satisfied.
10°¢ Q21571 - de3syz2 > O (69)
Toald
ds1¢Y1 - daszcyz2 > 0 (70)
108
Tc simplify the mechanization, let
" oo o1 = 9oa. The inequality of (69)
is satisfied if the constants gg3
and gdpz are controlled as
10710 follows.
s s 0070777 777777777777, 777777 - 20 if ( >
106 04 0-2 100 02 ez = d21 Z 1 Y1-y2) 2 O

Er (71)

Figure 10.- Parameter plane - constant processor -
trackers 1,2.
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The parameter Ep is then positive if

(ds1-933) > O (72)

Tt remains to insure that the inequality of (70) is satisfied. It follows
that (70) and (72) are satisfied if qz; and dss are chosen as indicated
below.

a1 > dss >0 if |yi| < |72] (73)
dss < ds1 < 0 if |ra| > |7z] (7h)

Parameters ED and ET are then positive. The sign of the constants as well
as the region of restricted operation is plotted as a function of the outer
gimbal angles in sketch (g); also

ds1,933 < O 1s shaded area and gz; > 0 1is
cross hatched area.

7

Steady-~state performance.- The equations
for steady-state pointing accuracy and steady-
& state drift rate accuracy are given, respec-
tively, by equations (62) and (63) where H
& Y2 and Hpy are now defined for trackers 1 and 2;
that is

H

]

hij = M,N for tracker pair 1,2

1!

Ay do1(as1~daz)s(ry1-72)

Substituting the elements of the H matrix

Sketeh (g) into equations (62) and (63) yields

{[PEK(Qsl-QSs)S(71—72)]2 -2[1 - C(71—72)]h§o}qgl

+ ({2(gg1+ass)[1 -0(71-72)]}h20h30)q21-[qgl'*qge -20s19ssc(71-72) 103, 2 0

(75)
2
{EDRK(QSl'QSS)S(71‘72)]2 -2[1 - c(y1-72)] <§?> }‘qgl

+ <{2(QB1+QS8)[1 -c(yri-72) 1} %? %% Q=1

2
t
- 145, + 985 - 2a3193sc(71-72) ] <i§> =20 (76)
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(These equations are also given by equations (C23) and (C2L4) in appendix C.)
The acceptable region of go3 for a given ga; and gas can then be deter-
mined for the most severe condition from equations (75) and (76). If the
equations are evaluated at the conditions listed in table TII, the most severe
condition is determined by scanning the range of gimbal angles and by control-
ling the sign of the input parameters (ti and hio). The constant (gmy) that
satisfies the most severe condition is plotted in figure 11, where the solid

qz3=—6.0
11— 933 40 A Stable set

-4.0 O Unstable set

|92

93
Figure 1l.~- Steady-state gain requirements - constant processor - trackers 1,2.

lines of constant qgg3 i1ndicate the minimum gp3 necessary to satisfy the
drift rate specification. The dotted lines of constant gas indicate the
minimum dpq required to satisfy the pointing specification. The acceptable
do3 for a given qs7 lies above the constant dgas curve. The diagram shows
that the sets of constants which satisfy the drift rate specification also
satisfy the pointing accuracy specification. The symbols A and o in fig-
ure 1l represent sets of constants that satisfy the steady-state requirements
and will be discussed in more detail in the following section.

Stability.- Stability of the system is determined for sets of constants
that satisf&fzhe steady-state requirements. OSystem stability was investigated
for the sets of constants given in table IV(b). As indicated in the table,
sets 1, 2, and 3 provide stable operation of the system whereas sets 4 and 5
provide an unstable system over the range of parameters investigated
(-60° < 71,75 < +60° and 1.11x10°° < Np,Nz = 1). The degree of stability for
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sets 1 and 2 is indicated by the parameter plane diagram of figure 10 where
the plotted points represent the solution for the worst case. The sets of
constants are also shown on figure 11 with an indication of the system stabil-
ity. The A and o represent, respectively, a stable set and an unstable set.
The superscript indicates the particular set of constants.

SIMULATION

The attitude control system was simulated on the analog computer to eval-
uate the performance of the system using each of the processors. The charac-
teristics of the satellite and the control system are given in appendix D.
Also, the star tracker gimbal angles and the characteristics for each
processor are included in the appendix.

The purpose of the simulation was twofold. First, it was desired to val-
idate the results of the stability analysis obtained from the digital com-
puter. BSecond, it was desired to compare the performance of the system with
the different processors. The simulation included the saturation type non-
linearity introduced by the motor but excluded the gyroscopic coupling torques
due to motor rotation. The gecmetry transformation was described by the
linearized equations (N matrix).

Ideal Processor

The system using the ideal processor to derive the attitude control sig-
nals was simulated on the analog computer. The system was designed so that
the linear damping and natural frequency are, respectively, € = 0.7 and
wy = 1.2. From the parameter plane (fig. 5), the variable parameters are as

follows:

B2

N,K = 14.32  where (Ni =1)

As is to be expected from the relation in figure 6, the system then provides
the desired steady-state performance for extermal torques less than
4750 dyne-cm.

The transient response of the system with the ideal processor is given in
figure 12. The attitude error about each control channel is plotted twice so
that the system response can be observed not only for large deviations but
also for small deviations in the region near equilibrium. The figure shows
that the control channels give identical responses to initial errors in
position and are decoupled.
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Partial Processor

The system using the partial processor was designed so that it exhibited
the desired performance over the complete range of operating conditions. The
minimum linear loop gain (Bgmin) is chosen so that the desired steady-state
performance is achieved for external torques less than or equal to
2000 dyne-cm (fig. 6); thus, B2pin = 5.96. From equation (37), B2max = 34.k
for lyl—ysl = 80° which corresponds to a restricted region (AyR) of 10°. The
compensator time constant (BL = l/Tg) is chosen so that satisfactory perfor-
mance is achieved over the complete range of B2. If Bl = 1.25, the damping
ratio of the system varies from ¢ = 0.25 to ¢ = 0.70 as observed from the
parameter plane (fig. 5).

The transient response of the system is indicated in appendix D (fig-
ures 13, 14, and 15). The response of the system to initial attitude errors
of 5° about all control axes is shown in figure 13 when the loop gain is mini-
mum (B2 = 5.96) and in figure 14 when the loop gain is maximum (B2 = 34.4).
The difference between the two response curves i1s negligible because the lin-
ear range of the saturation type nonlinearity is so small that it functions
like a relay; thus, the system functions in the nonlinear region most of the

time.

The coupling between control channels is observed by comparing the three
transient response runs displayed in figure 15. Each run shows the response
of the system to an initial attitude error of 5° about a single control axis.
Comparison of the runs indicates that pitch and yaw motion is coupled into
the roll channel. Also, the pitch and yaw channels are observed to be
independent.

Constant Processor

The system using the constant processor for tracker pair 1,3 and tracker
pair 1,2 was also simulated. For a given set of constants, the gimbal angles
were chosen in each case so that the system was operating under the most
severe conditions.

The transient response of the system using the constant processor for
tracker pair 1,3 is given in appendix D (figs. 16 and 17). The constants for
the processor are rsg = -4.25, |r31| = 2.0, and |r33] = 3.5. Figure 16 shows
runs in which an initial attitude error is imposed about a single control
axis. The run on the left of the figure shows that roll motion is not coupled
into pitch and yaw whereas the remaining two runs show that pitch and yaw
motions are coupled into the other two channels. Figure 17 shows the response
of the system when an initial attitude error is imposed simultanecusly on all
three control channels.

The response of the system using the constant processor for tracker pair
1,2 is given in appendix D (figs. 18 and 19). The response in both figures
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+7.0 B +6.o)

is for the same set of constants (lQ21] = 3.0, Qa1 = —6.0’ and das = 7.0

but for different gimbal angle values. Figure 18 shows the behavior of the
system for gimbal angle values that provide the most unsatisfactory response.
The yaw channel response clearly indicates that the coupling term dominates
until the attitude error from the pitch channel sufficiently decreases. Fig-
ure 19 shows the behavior of the system for gimbal angle values that provide
significantly improved response.

CONCLUSIONS

Three methods of processing star tracker information to derive attitude
control signals have been developed. They are: (1) ideal processor, (2) par-
tial processor, and (3) constant processor. The system using each of the pro-
cessors exhibits acceptable transient and steady-state performance. Also,
each of the processors is simple enough to be mechanized on board current
spacecraft.

The star trackers are used in pairs to estimate the attitude errors of
the satellite via the processors. The simplest form of the processors is
obtained when the paired trackers are mounted to the vehicle so that their
outer gimbal axes are parallel and when two inner and one outer gimbal error
signals are used to derive the attitude control signals. The stability of
the system is then independent of the inner gimbal angles of the star trackers.

An easily applied criterion for selecting stars (by ground operation) to
avold the indeterminant condition exists 1if the star trackers are used as
suggested. The indeterminant condition implies that the attitude of the vehi-
cle is unobservable; that is, the gimbal error signals being used to estimate
the attitude errors are dependent. The condition occurs when the plane formed
by the optical axes of the paired trackers contains the outer gimbal axes of
the trackers. A region of restricted operation is established in the neigh-
borhood of the indeterminant condition to insure that desired performance is
maintained.

The ideal processor is the most complex of the three processors from the
point of view of implementation because such trigonometric functions as the
sine and cosine of the difference of gimbal angles and the tangent of gimbal
angles must be mechanized. However, the control signals derived from this
processor are independent and therefore provide a well-behaved system. The
desired system performance is achieved over a commanded gimbal range that is
limited only by the physical nature of the star tracker.

The partial processor is much simpler to mechanize than the ideal pro-
cessor. Only the simple trigonometric functions such as the sine and cosine
are mechanized with resolvers. The processor provides two control signals
that are independent. Also, the required performance of the system is
achieved over a commanded gimbal range that is again limited only by the
physical nature of the star tracker.
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Brrors in mechanization of the partial processor have a negligible effect
on the stability and performance of the system. To avoid problems due to
errors in mechanization, it is only necessary to insure that the errors do not
allow the system to operate in the region of restricted operation. Therefore,
the restricted region must be increased by an amount equivalent to the error

in mechanization.

The constant processor is the simplest of the three processors. Only
amplifiers, potentiometers, and relays are required to mechanize Terms that
are constant in magnitude but vary in sign as a function of the outer gimbal
angles. Performance of the system using the constant processor is acceptable
over a ginbal angle range of +60°.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Nov. 29, 1967
125-19-03-06-00-21
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APPENDIX A

DERIVATION OF EQUATIONS RELATING THE MOTION OF

THE TRACKERS AND VEHICLE

The relationship between the motion of the trackers and the motion of the
vehicle is derived in this appendix. The relationship is obtained by express-
ing the motions as angular velocities and exploiting the simple transformation
properties of angular velocity vectors.

Assuming that the tracker tracks its star without error, then the angular
velocity of the vehicle in inertial space is the same as its velocity relative
to the trackers. The inertial velocity can be expressed in terms of compo-
nents along orthonormal axes fixed in the vehicle as wiylV + woy2V + way3Y.
The parameters of the tracker are needed to express the velocity of the
vehicle relative to the tracker.

The sketch on the right of figure 2 shows the angles associated with
tracker 1. These angles, with appropriate subscripts, are also associated
with the other trackers. Each angle o relates a "line of sight" coordinate
system (1) = (1Y, 2%, 3') to a coordinate system (t) = (1%, 2%, 3%t) fixed to
the tracker in such a way that 11 = 1% The (t) coordinates are related to
a (y) = (1Y, 2Y, 3Y) coordinate system by B so that 2% = 2Y, Similarly, (y)
is related to an (x) = (1%, 2%, 3%) coordinate system by 7 so that 3Y = 3%,
The angles are positive when generated by right-hand rotations about their
generating axes. Whereas the (1), (t), and (y) coordinates and their angles
a, B, and y move as the vehicle moves, the (x) coordinate is fixed to the
vehicle in a way that varies from tracker to tracker. The (x) coordinate of
each of the four trackers amounts to a permutation of the vehicle's coordinate
system (v): thus (x) = P(v), where

O 1 o© 0 -1 0
Pr={ 0 O 1 }; P =| O o -1 3
1 0 o0 1 0o o
(AL)
O o 1 0o o0 -1
Pz={ 0 -1 0]; Pa=1\{-1 0 O
1 o0 o0 o 1 ©
J
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The inertial angular velocity of the vehicle in (x) coordinates is given
as lelX + wey2® + w3X3X. The fundamental relationship which states that
this velocity is equal to the velocity relative to the tracker can be
expressed in the form

wl® + woxl® + wex3* = a1t 4 poY 4 y3* (A2)

The following equations are obtained from the definitions of the coordinate
systems:

1* cy sy 0 1Y
2* |=|-sy oy O oY (A3)
3* 0 0 1 3,

1* cy sy O e O -sB J_t cyeB sy -cysB lt

o* = -8y ¢y O o 1 0] 2t = -sycB cy sysf 2t

3% o o 1 sB O cB 3t 8 0 op 3¢

(AL)

The 4 equation and the ]_t equation are obtained by taking the inverse of
equations (A3) and (AL) and are substituted into equation (A2) to give

(.le 07 CB S')’ O G.,
Wox | =1 -sycB ey O B (A5)
Wax sB 0 1 %

Inverting this transformation to solve for the tracker parameters gives

& cy -sy 0 W1x
B | == sycB  cycB 0 Wox (n6)
14 -cysB  sysB  cP Wax

Equation (A6) holds for all the trackers, which differ from each other
by the way they are mounted on the vehicle. The manner of mounting is
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expressed by the permutation matrices in equation (Al). Postmultiplying the
transformation matrix in equation (A6) by Pj, for example, relates the num-
ber 1 tracker parameters to the components of inertial angular velocity in
vehicle coordinates:

Qg Wiy 0 CYa -s73 Wy

B.‘L = R Wovyr = g?;— 0 S‘)’lCBl C'}'lCBl Wovyr (A‘?)
1

71 Wav cBy -cyisPr syisBa Way

The rate transformation (R) for each of the trackers in figure 2 is obtained
in a similar manner and is given in table I.

L1



APPENDIX B

DERIVATION OF THE CHARACTERISTIC EQUATION FOR THE SYSTEM USING

THE PARTIAL, PROCESSOR WITH IMPERFECT MECHANIZATION

The equations describing the effect of errors in mechanization of the
partial processor on the stability of the system are derived in this appendix.
The errors are assumed small enough so that only the first-order terms are
significant.

The partial processor for tracker pair 1,3 when perfectly mechanized is

B -
0 1 0
Mp = [dagsys O  -digcyi (B1)
digcys O d1s871

It is assumed that the constant terms are perfectly mechanized and that errors
exist only in the gimbal angles 731 and ys. The errors result from either a

misalinement of the resolvers used to mechanize the trigonometric functions or
an inaccurate measurement of the gimbal angle. Gimbal angles with errors are
represented by 73 + Ay;. The partial processor with errors in mechanization

s)

0 1 0
Mpp = [dias(rstdys) 0 -disc(yi+oy1) (B2)
disc(ystays) O dias(y1+A71)
— J
The characteristic equation is
CE = DET(I+GMPEN) =0 (B3)
where
r
g1 0 0
WiK(T1s + 1)
G = 0 go 0 P gl = —_— R (BJ-{-)
s(Tas + 1)(Tys + 1)
0 0 g9
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Define the following

[~ ]
g 0 O
- K(TlS + l)
G= (o g ol , g = e (B5)
s(Tos + L)(ys + 1)
0O 0 g
N, O 0
Dp = |0 Nz O (B6)
0 0 Na
L i
so that — —
b1y biz bas
(B7)
B = DpMppN = 0 Tbaz Dbes
O bz b3§J
G = GDF
The characteristic equation is
CE = DET(I + GB) = O (B8)
or
CE = (L + gN1)(1 + Bpg + Bpg®) = 0 (B9)
where
Bp = baz + bas (BLO)
Bp = bzzbas - basbsz (B11)
The B matrix for the partial processor for tracker pair 1,3 is
N1 -NicyatBa NysyitBy -1
B=10 {Nodials(yatars)sys + c{yi+ayi)ersll  {Nadiasls(ya+tara)eyy - c(yi+ayi)sysll

o {Nadialc(ratays)syy - s{yitayi)ersll  {Nadiaslce(va+aya)eyy + s(yi+ayi)sysll

(B12)
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If Ay; 1is small enough so that the approximations cAy; = 1 and siys = Ayj
are valid, equation (Bl2) can be written as

N1 ~Nicy1tBy Nisy1tBa

B=10 {Nodrslc(yi-73) + syicra(brz-ayi)l} {(Nod1al (cyacyi)Ars + (syisys)ayil}

0 { Nadial (syzsy1)ays + (cyicys)ayall {Nzdialclyi-73) - 071373(A7’3-A71)]}J (B13)

By using equation (Bl3), the parameter Bp (B10) can now be written as
Bp = (N2 + Ng)dise(y1-7s) + dis(Nesyicys - Nacyisys)(Ays-471) (B1k)
Likewise, the parameter BD (B1l) can be written as follows.

Bp = NoNad5a{le(y1-78)1% + 8le(y1-ya)s(yi-rs)] - 8% [syscyicyasy:]

+ [(eysey)ays + (syisys)dyi1l(syssyi)dys + (cyacyi)ay.l} (B15)
where

& = (Lys-Ly1)

Equation (Bl5) reduces to the following when only the first-order error terms
are considered significant.

By = N2N3d§30(71-73){0(71'73> + 8[s(y1-73)1} (B16)

Fquations (Bl4) and (B16) define the parameters that are used in the charac-
teristic equation (B9) to determine the effect of errors in mechanization on
the stability of the system.
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APPENDIX C

DETERMINATION OF STEADY-STATE PERFORMANCE FOR SYSTEM
USING THE CONSTANT PROCESSOR
The equations describing the steady-state performance of the system using

the constant processor are derived in this appendix. A block diagram of the
system with all input parameters indicated is given by sketch (h)

$(9)
|_ _________________ 1 | R A 11 8(s)
9% 0o ol Kro o : Jlr ool fisoo Lo o|l\vs
0 % o Y 0 Ki o N % 0 o % 0 0 % o } >
- - +
0 0 9% } 0 0 Ky } 1| oo oo & oot
Compensator | [ |_ _________ —_——————— _J
| R I Vehicle
| )
[ 1k 0 © 3 ? 0 o 3 ? 0 I
{ 0K o— o0 3 O o5 0 \
I | o o Ke 0 0 é oo 1]
.- | " _
Motors “wio
“w 20
“w 30
‘ hiy hy2 his
0 hap ez
’ Y hso P33
Sketch (h)
where
H = hij = M. N (c1)
Ko(Tis + 1
8o = C(,l ) (CZ)
Tos + 1
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Sketch (h) can be reduced to sketch (i)

o

“wio
“w20
“w 30

T, (S)
T,(8)
T5(S)

€ (S)
e (S) T '“I
e3(S) g 0 O | N
0 9% o} : 0 9% O :
0 0 9 I o 0 9y |
Compensator L ——————— J
Motors
hyy
0] h22
0 haz
Sketeh (i)
where
Kps
fm = T.s + 1
_]:_. = EI[.EE s
Tm g
K = KCKTH
Iy

(c3)

(ck)

(c5)

The steady-state performance is determined by writing the output parameters
as a function of the input parameters and using the final value theorem; that

is,

= Limit s
s - O

where the "

The steady-state errors are determined as follows.
position error caused by an initial angular velocity of the vehicle and an

~ .
o(s)

o(s)
Y(s)

- —

= Limit st
5 - O

initial angular velocity of the motor is

L6

-

v

D Qe
O

.é_o
o}

ss" subscript indicates steady state.

Wyw1o0

Wy20

-

T1(s)

To(s)

Ta(s)

_— p—

The steady-state



— - — —
Cpss th
Ogs| = W | h2o (c7)
Vas hsfj
where
[~ l
1 [h18h32‘h12h33] [hlzhza-h13h22]
hllK hllI{HD hllK}ID

W o= 0 §§%> <' HDK> (c8)

hao
© < HDK> < >
hio @o - fL Wy10
1
. J
hoo [ =] 66 - T, “wao (c9)
hso &o - L wwsq_
_ T I1

HD = determinant of H

The velocity error for a constant external torque about all three axes
[ri(s) = t3/s] is

(bss tl—1
. 1
Bgg| = =— W t2 (c10)
I
Vas ta
.. .

The steady-state pointing error and drift rate error are defined,
respectively, by equations (C9) and (Cl0).

Pointing error = (eis + Wgs)lla < PE (c11)
Drift rate error = (éis + ¢SS)1/2 < DR (c12)

b7



where ©PE and DR are, respectively, the maximum allowable pointing error and
the maximum allowable drift rate error. Use of equations (C7) and (ClO)
allows equations (Cll) and (C12) to be written as follows:

2 2.1/2
L [(hasheo - heshao)” + (-haghzo + hpghse)”] < PE (c13)
H KX
D
1 2 2-1/2
—_— t t t
IK [(%33 -2 - hos —i> + <—h32 £ 4 hos Eﬁ) ] < DR (c1k)
D T, T T, T

The system will perform as required in steady state if the inequalities of
(c13) and (ClL) are satisfied. The equations are general since the constant
processor for a particular tracker pair defines the H matrix. The steady-
state performance of the system using the constant processor is now determined
for the following two specific cases. They are: (1) tracker pair 1,3 and

(2) tracker pair 1,2.

Tracker Pair 1,3

The H matrix for tracker pair 1,3 is

1 (riisyi-cyitBi-riscys)  (riicyi+syitBi+rizsys)
H=MN-=|0 (r21871-r2acys) (rzacystrassys) (c15)
0 (ra1s71-rascys) (raicyi+rassys)
L
and
Hy = (rearss-resrsi)ce(71-7s) (c16)

With re; = O and equations (CL5) and (C16), the pointing error equation (C13)
becomes

— . . -
,J[T31+T33-?T31f§§ﬁﬂ73:?3)Jhgo_j_ﬁ??zs[fsgjfsls{7;f73)ﬂ}??ph39>+ rgshgo < PE

K[ -rparaic(y1-7s)]

(c17)

and must be evaluated at the most severe conditions. If it is assumed that
Ayg = 10° and |hgo| = |hso|, (C17) is evaluated at the following conditions.
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y1-73 = +80° rz3 =0
hzo = -hso ray >0 (c18)
rog < O raz < O

In order to determine acceptable sets of constants, (Cl7) is written as a
quadratic in roz as indicated by

{n3o - [(PE)KT310(71-73)]2}r§s - {2[raz-r315(71-73) Jhoohaolras
+ [r3; + ras - 2rairass(y1-7a)lh3e < O (cL9)

and is evaluated subject to the conditions listed in (C18). The allowable
range of roz for a given rmzj; and rsz that will satisfy the pointing accu-
racy specifications over the complete range of operating conditions can be
determined.

The constants required to satisfy the drift rate specifications are
determined in a like manner. TIn fact, from (C1l3) and (Cl4), the corresponding
drift rate inequality can be written from (Cl9) and is

{ta" - [(DR)KIlr31C(71-73)]g}rgs - {2lras-ra1s(y1-7s) ltotalras
+ [r31 + 35 - 2rairass(yi-ya)lta” < 0 (c20)

Equation (C20) is evaluated subject to the conditions listed in (Cl8) and

to = -tz. The acceptable range of rpz for a given 1rg; and rssz that will
satisfy the steady-state drift rate error for all operating conditions can
then be calculated.

Tracker Pair 1,2

The H matrix for tracker pair 1,2 is

—

1 (g11871-cy1tB1-q13572) (qi1cy1+sy1tB1-d1acy2)

H=MN-=|0 de1(sy1-sy2) az1(cyi-cys) (ca1)
0 (az18y1-U33572) (az1c71-d33C72)
L —

where

L9



G231 = Qdos

Hp = d21(ds1-933)s(71-72)

The elements of the matrix in equation (C21) can be substituted into
equation (Cl3) to provide the following equation

([qgl + qgs - 2QSlQSBC(7l‘72)Jh§O - {2Q21(Q31+QS3)[1 - 0(71‘72)]}h20h80

/ -
+ {2931{1 - C(71-72)]}h§o)l 2[KQZl(qSl'q38)S(71'72)] = PE (ca2)

The inequality of (C22) is written as a gquadratic in as1 (C23) so that sets
of constants can be determined that will satisfy the steady-state pointing
accuracy.

{[(PE)K(QBL-QS3)5(71-72)]2 -2f1 - c(71'72)]h§O}q§l
+({2(as1+aas)[1 - c(y1-72)1}hachag) goy

- 15, + a3s - 2@31@330(71-72)]h§o 20 (ca23)

The most restricted range of qpy for a given (g7 and dss 1is determined if
(c23) is evaluated at the most severe conditions.

As before, the inequality for drift rate error can be written directly
from (C23) and is

2
{E(DR)K(QS1—Q33)S(71-72)]2 - 2[1 - e(yi-72)] <§§>‘}'Q§1
ta ts
+ <{2(Q31+QS3)[1 - c(y1-72)] I fi) Q21
1
L \2
- (431 + 435 - 24s19s3c(71-72)] <§§> 20 (cak)

Again the parameters are chosen so that the worse case is obtained; that is,
it is necessary to choose the sign of tp and tz and the magnitude of (y1-72)
that results in the most severe condition. The results of the calculations
are plotted in figure 11.
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APPENDIX D
CHARACTERISTICS OF THE SATELLITE

Vehicle characteristics
Iy = I;; = 1952 kg-nf (1440 slug-ft=) i=

T =0

13
Motor characteristics
Stall torque = Tg = 0.0353 N-m (5 in.-o0z)
Time constant = 7 = 76.8 sec
K, = 0.104l N-m-sec (0.0768 ft-1b-sec)

Compensator characteristics

Ideal processor

1
KC = 268,000 r—am
T1 = 5.27 sec
To = 0.527 sec
Partial processor
K = 268,000 —r
c ? radians
Ty = 8.0 sec
T = 0.8 sec
Constant processor
6 l
Ke = 268,000 rzgyans

T1 = 5.0 sec

T2 = 0.5 sec

Processor and geometry
Tdeal processor

Unity feedback
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Partial processor
|dzs| = 2.4
B1 = 30°
y1 = 60°
Figure 13
y1-73 = 80° where ys = -20°
Figures 1k and 15
y1-ys = 0° where ys = 60°
Constant processor

Tracker pair 1,3 - figures 16 and 17

it

Tog = —4.25 Taga 2.0 rag = —3-5
y1 = -35° By = 30° v = -45°

Tracker pair 1,2

Figure 18
dz1 = 9oz = 3.0 gz1 = -6.0 dsg =
71 = 60° By = 30° Y2 =
Figure 19
Qz1 = doz = 3.0 dz1 = 7-0 dzs =
71 = -50° By = 30° Y2 =

52
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Figure 13.- Transient response of system using
the partial processor - minimum loop gain.
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Figure 14.- Transient response of system using
the partial processor - maximum loop gain.
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Figure 15.- Transient response of system using the partial processor -~ initial position error
about single axis to show coupling.
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Figure 16.- Transient response of system using the constant processor for trackers 1,3 -
initial position error about single axis to show coupling.
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Figure 1/.- Transient response of system using
the constant processor for trackers 1,3 -
initial position error about all three axes.

56

480 —

240 —

arc min

-240 -
—ago - [ [ ! [ [ [ [ [

10—

# 0

arc min

480 —

24oj\ﬁ
g,
arc min 0

-240 —

_ago— | [ | [ [ I |

arc min

480 —
240 —
¥,
arc min 0

-240 —

—480 — ! | | | |

10 —
.
ot O
o
-10 |

o) IOO 200 300 400 500 600 700 800
Time, sec

Figure 18.- Transient response of system using
the constant processor fdr trackers 1,2 -
worst case gimbal angles.
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Figure 19.- Transient response of system using
the constant processor for trackers 1,2 -

arbitrary gimbal angles.
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TABLFE, I.- TRANSFORMATION R RELATING THE STAR TRACKER

Tracker

GIMBAL RATES AND THE VEHICLE INERTIAL RATES

-CY4

-5y 4tB4

[ 1=1IRI]

a0 7]

cya1/cBy -s71/cBy Wy,
871 CcY1 Wo
-cy1tBa sy1tBy W
- — T

'072/032 572/052 Wy,
=572 ~CY2 W
cy=tBs -572tB2 Ws
873/033 C73/053 Wy
-C73 573 1=
-5Y3tBs -Cy3tBs Wa
0 -cya/cBy Wy

O —S')’4 U‘)Z

° 1 C'}’4tB4 (A)s
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TABLE II.- TRANSFORMATIONS DESCRIBING THE GEOMETRY (N) AND THE PROCESSORS

(M, My, M,) FOR PAIRS OF TRACKERS

Tracker
= = M
pair [ 1=1In]1] [ ]J=1M]1
- - T T T ’—>—l_ T~ T T 1r ﬁ“
’—AB]. [. 0 571 cr1 T &9 €p e(72-72)tBa s(71-72) 81| [ &Ba
1
1,2 oY1 1 -ey1tBa syatBa [AC) €9 |= 5.2 cyz 0 cY1 AY2Y
12
MBo o ~S72 -C72 oy €y -s72 0 -571 OBz
C J - - - L ' — J v
Diz = s{71-72)
(‘ T F 7 ( . (‘ ] ( . 7
28 0 s71 ey &9 g s(yaz-72)t81 e(y1-73) -tB1 | | &8y
1
1,3 Ay 1 -cyatfa 8718y o8 €6 |~ Dyg 873 0 -Cy71 &Yy
Mg o] -cYs 573 Ay €y cYs 0 s71 ALY
L L J L 4 L - J v
Diz = c¢(71-73)
r 1 7 - - 7
OBy [ 0 871 ey AP F€cp cyitBisya SY1574 tBa LBy
1,k 72 1 —eyatBy  syatBy| |08 co |= 5 | Tameyssrath er1eys e || o
14
ABg -cyg o] -8Y 4 DAY € -cy1tBicya -s71C74 -syy LBy
0L J LU LY L L
Dia = 8Y1574-Cy4tBa
7 r T ] 7 r
MBy 0 s71 cya A o ~s(71-72)tB1tB2  c(y1-72)tB2 tB1 OBy
1,2 AV 1 -cy1tBy sy1tBy JA%) 0 | 7o sy2tBatsy1tBy -cYL cy1 lAvss
12
Aye 1 cyatBz  -syatBe A\V_J Léw ey2tBateyy thy 571 -571 LYz
Fiz = tBi+e(ri-72)tBa
Tracker
= = (M
pair [1=1mp10 1] [ 1=1[(M101
A F - — _ P
€p urg 1 U3 OBy e d11 1 dia OBy
1,2 €o d1scys 0 d1pCy1 Y €g = 921 0 Qo3 LYy
ey ~-d12572 0 -da2s71 ABo € 431 0 433 JAVPY
L J L J LY L N
- - S [:7“ - 0T T T TS F S
(E(P Vii 1 Vis JACER €p rii 1 g 2By
1,3 €9 d13s7s 0 ~d18C71 [&43 €g = Tz1 0 Tea | | &71
ey discys 0 d13871 JAGL €y 31 0 T3z AB3
— - — - _ - — - = -
1,k No partial processor No constant processor
1,2 No partial processor No constant processor
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TABLE III.- DATA REQUIRED FOR EVALUATING

STEADY-STATE PERFORMANCE OF SYSTEM

PE = 1 arc min

DR = 15 arc sec for 50 min

6y = ¥y = O

|tz| = |ta]

|wwi|max = 1000 rpm

lwwzo| = |owao| = 0.l Joyi |max
K = 1h.32

T, = 1952 kg-n® (1440 slug-ft2)

|tz| = |ta| = 107* N-m (10® dyne-cm)
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TABLE IV.- SETS OF CONSTANTS FOR THE CONSTANT PROCESSOR

(a) Tracker pair 1,3
Set | ro: Tos |ra1] | |ras| | Stebility
1 0 -4.25 2.0 3.5 Stable
2 0 -3.5 2.5 4.0 Stable
3 o | -k.0 2.0 3.0 Stable
L 0 -3.5 2.0 2.5 Unstable
5 0 -3.0 2.0 2.0 Unstable
—
(b) Tracker pair 1,2
set | |aza| | lasi| | lass| | stebility
1 3.0 7.0 6.0 tab
6.0 | -7.0 Stable
2 6.5 L.5 4.0
4.0 .5 Stable
3 5.0 6.8 6.0
6.0 6.8 Stable
i 6.5 5.0 k.o
.o -5.0 Unstable
P 5.0 7.5 6.0
6.0 7.5 Unstable
NASA-Langley, 1968 —— 21
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